Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.
نویسندگان
چکیده
Polyurethanes with regular and controlled block arrangement, i.e., alternating block polyurethanes (abbreviated as PUCL-alt-PEG) based on poly(ε-caprolactone) (PCL-diol) and poly(ethylene glycol) (PEG) was prepared via selectively coupling reaction between PCL-diol and diisocyanate end-capped PEG. Chemical structure, molecular weight, distribution, and thermal properties were systematically characterized by FTIR, (1)H NMR, GPC, DSC, and TGA. Hydrophilicity was studied by static contact angle of H2O and CH2I2. Film surface was observed by scanning electron microscope (SEM) and atomic force microscopy, and mechanical properties were assessed by universal test machine. Results show that alternating block polyurethanes give higher crystal degree, higher mechanical properties, and more hydrophilic and rougher (deep ravine) surface than their random counterpart, due to regular and controlled structure. Platelet adhesion illustrated that PUCL-alt-PEG has better hemocompatibility and the hemacompatibility was affected significantly by PEG content. Excellent hemocompatibility was obtained with high PEG content. CCK-8 assay and SEM observation revealed much better cell compatibility of fibroblast L929 and rat glial cells on the alternating block polyurethanes than that on random counterpart. Alternating block polyurethane PUC20-a-E4 with optimized composition, mechanical, surface properties, hemacompatibility, and highest cell growth and proliferation was achieved for potential use in nerve regeneration.
منابع مشابه
Polyhedral oligomeric silsesquioxane (POSS) suppresses enzymatic degradation of PCL-based polyurethanes.
In this Article, we studied the enzymatic hydrolytic biodegradation behavior of a novel multiblock thermoplastic polyurethane (TPU) system, which incorporates polyhedral oligomeric silsesquioxane (POSS) into linear biodegradable thermoplastic polyurethanes containing poly(ε-caproactone) (PCL) and polyethylene glycol (PEG) blocks. The biodegradation behavior of POSS-PCL-PEG TPUs was characterize...
متن کاملWater - triggered shape memory of multiblock thermoplastic polyurethanes ( TPUs ) 3
In this article we describe the preparation and characterization of a water-triggered shape memory polymer (SMP) family, PCL–PEG based thermoplastic polyurethanes (TPUs). Upon immersion in water, water molecules selectively swelled the hydrophilic PEG domains, resulting in durable hydrogels with strain-to-failure values greater than 700%. Dry samples fixed in a temporary shape underwent watertr...
متن کاملPreparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone
Objective(s): Micelles have been studied as nanoparticulate drug delivery systems for improving the topical ocular delivery of hydrophobic drugs. The objective of this study was to develop and characterize dexamethasone-loaded polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL) micelles to improve patient compliance and enhance the ocular bioavailability of poorly water-soluble ...
متن کاملHigh Performance Shape Memory Polyurethane Synthesized with High Molecular Weight Polyol as the Soft Segment
Shape memory polyurethanes (SMPUs) are typically synthesized using polyols of low molecular weight (MW~2,000 g/mol) as it is believed that the high density of cross-links in these low molecular weight polyols are essential for high mechanical strength and good shape memory effect. In this study, polyethylene glycol (PEG-6000) with MW ~6000 g/mol as the soft segment and diisocyanate as the hard ...
متن کاملAsymmetric Rectangular Waveform in Stimulation with High Frequency Alternating Current Reduces the Threshold for Neural Conduction Block
Introduction Abnormal neural impulses in the nervous system may lead to various diseases and disabilities. High frequency alternating currents (HFAC) has been used to block the propagation of such impulses and improve the symptoms or disabilities. The technique is safe, reversible, and relatively selective, and its reliability, the optimum stimulation parameters, and elimination of the onset re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 102 3 شماره
صفحات -
تاریخ انتشار 2014